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Abstract. In this paper we address the relationship between zero temperature Glauber dynamics
and the diffusion–annihilation problem in the free fermion case. We show that the well known
duality transformation between the two problems can be formulated as a similarity transformation
if one uses appropriate (toroidal) boundary conditions. This allows us to establish and clarify the
precise nature of the relationship between the two models. In this way we obtain a one-to-one
correspondence between observables and initial states in the two problems. A random initial
state in Glauber dynamics is related to a short-range correlated state in the annihilation problem.
In particular, the long-time behaviour of the density in this state is seen to depend on the initial
conditions. Hence, we show that the presence of correlations in the initial state determine the
dependence of the long-time behaviour of the density on the initial conditions, even if such
correlations are short ranged. We also apply a field-theoretical method to the calculation of
multi-time correlation functions in this initial state.

1. Introduction

It has been known for a long time that there is a relation between Glauber dynamics [1]
and the symmetric diffusion problem in the presence of annihilation and deposition of pairs
of particles for a certain choice of the diffusion constant [2], which corresponds to the case
in which this problem can be solved using free fermions [3, 4]. Using this relation, Family
and Amar [5] have computed the time evolution of the particle density in the transformed
state of the annihilation problem that corresponds to random initial conditions in Glauber
dynamics atT = 0. They have shown that their result only agrees with the previously
known results by Spouge [6], if one starts with zero initial magnetization in the Glauber
problem. In all other cases the long-time behaviour of the density shows a dependence
on the initial conditions, a result which differs from the well known universal behaviour,
valid for random initial states in the annihilation problem [7]. This raises the question
of the correspondence between initial states in the Glauber and annihilation problems
and, more generally, the relation between observables in the two systems. In this paper,
we show that the duality transformation between the two systems is really a similarity
transformation, if one uses sector-dependent, toroidal boundary conditions in the Glauber
model (see below). We show that a random initial state in Glauber dynamics is mapped
through this similarity transformation to a state with nearest-neighbour correlations. Such a
state is translationally invariant, which allows us to recover the result by Family and Amar
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and also to compute higher-order correlators using a field-theoretic technique. The relation
between these quantities in the transformed state and their counterparts in the random initial
state with density 1/2 is explored and some calculations are explicitly done. Finally, we
emphasize the role of the correlations in the initial state for the failure of the universality
hypothesis.

The structure of this paper is as follows: in section 2, we present Glauber dynamics
in terms of a quantum spin chain and the definition of a Temperley–Lieb algebra in
terms of the spin-12 operators. The associated Hecke algebra permits the construction
of the similarity transformation to the reaction–diffusion model and also determines the
boundary conditions of the system. The correspondence between observables in Glauber
and annihilation dynamics is also addressed. In section 3, we discuss the relation between the
initial states in the two problems. In particular, we study the mapping between the random
initial state in Glauber dynamics and a short-range correlated state in annihilation dynamics.
Using these results and those of section 2 we establish a correspondence between correlation
functions in the two problems. In section 4, we show that the short-range correlated state
is a translationally invariant state and we show how to calculate multiple-time correlation
functions in this state using a field-theoretic technique. The density is explicitly computed
and shown to agree with Family and Amar’s result. We study the relation between two-
point correlation functions in these states and the random initial state with density 1/2 and
recover the zero time correlations as a special case. Finally, in section 5, we present our
conclusions.

For simplicity we discuss only the case of zero temperature Glauber dynamics although
our results are easily generalized to other problems with little modification, for example,
Glauber dynamics at finite temperature or the model of generalized dynamics considered
by Peschel and Emery [8], which maps by a duality transformation to a model of diffusing
particles with pair annihilation and creation away from the free fermion line.

2. The transformation law for the operators

It is well known [3, 9] that certain reaction–diffusion systems provide physical realizations
of Hecke algebras. The time evolution of these processes is described by a master
equation which can be conveniently written using an operator formalism, in which one
assigns to each configuration of the system a state vector in an Hilbert space [10]. The
probability distribution is then represented by a state vector obeying a ‘Schrödinger’ equation
∂t |9〉 = −H |9〉 with |9〉 = ∑

n P (n, t)n〉 whereP(n, t) is the probability of finding
configurationn at time t and the set of different|n〉 is supposed to be orthonormal and
complete. The operatorH is a linear and in general non-Hermitian operator encoding the
rules of the stochastic process. For some systems of interest this operator can be written
[3, 9] as a sum of generators of Hecke algebras. Given that there exists a relation between
reaction–diffusion systems and Glauber dynamics [2], it is natural to ask if the evolution
operator for this system can also be written in terms of Hecke algebra generators, and if
so, what conclusions can one draw from it. In order to show this we define the following
operators on a lattice ofL sites

H± ≡
L∑
j=1

(1− e2j−1)(1− (e2j + e2j−2− 1))

e2j−1 = 1
2(1+ σ̂ xj ) 16 j 6 L

e2j = 1
2(1+ σ̂ zj σ̂ zj+1) 16 j 6 L− 1 (1)
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and e0 = e2L which will be given below. The operatorŝσ zj , σ̂ xj are Pauli spin matrices at
site j .

The setej (16 j 6 2L− 1) forms a Temperley–Lieb algebra [11], characterized by the
relations

e2
j = ej
ej ej±1ej = 1

2ej

ej ei = eiej if |j − i| > 2. (2)

In order to constructe2L explicitly we define the set of operatorsgj (1 6 j 6 2L − 1)
and the duality operatorD by [12]

gj = (1+ i)ej − 1

D =
( 2L−1∏

j=1

gj

)
X (3)

where
∏2L−1
i=1 gj is the ordered product of thegjs andX will be either 1 or σ̂ zL in this

paper. The important points about these two operators are that both commute withgj
for 1 6 j 6 2L − 2 and that(g2L−1X)

2 = (Xg2L−1)
2. WhenX = 1, we will call the

corresponding duality operatorD+ and whenX = σ̂ zL, we will call it D−. As we will
see below the choice of the operatorD is directly related to the different types of toroidal
boundary conditions that were referred in the last section. The operatorsgj , together with the
commutation relations withX, form an affine Hecke algebra associated with the Temperley–
Lieb algebra given above (see [3, 9, 12] and references therein) and one findsDej = ej+1D

for 1 6 j 6 2L − 2. Sinceg†j = (1− i)ej − 1, one finds from (3) thatg†j gj = 1. Also
X2 = 1, and we conclude thatD is unitary and hence invertible. We definee2L as

e2L = De2L−1D
−1. (4)

The set of operatorsej (1 6 j 6 2L − 1) and e2L satisfies the relations of a periodic
Temperley–Lieb algebra [12] with 2L generators which is defined by (2) together with
similar relations fore2L(e2L+1 = e1, etc). For the particular choices ofX given above, it
can be shown that [13]

e2L =
{

1
2(1+ Ĉσ̂ zLσ̂ z1) if X = 1
1
2(1− Ĉσ̂ zLσ̂ z1) if X = σ̂ zL

(5)

where Ĉ = ∏L
j=1 σ̂

x
j . If we substitute the definitions of theejs in (1) H± can be seen

to be the generator of the time evolution for Glauber dynamics. The+ (−) sign stands
whenX = 1 (X = σ̂ zL). This explains the use of the notationH±. The choiceX = 1
(X = σ̂ zL), corresponds to the operatorH+ (H−) which, when applied to eigenstates ofĈ
with eigenvalue 1 (−1), generates the time evolution for Glauber dynamics atT = 0 with
periodic boundary conditions [14]. When applied to eigenstates ofĈ with eigenvalue−1 (1)
H+ (H−) generates the time evolution for Glauber dynamics with anti-periodic boundary
conditions. Both dynamics are stochastic. We see that one can indeed write the evolution
operator for Glauber dynamics in terms of Hecke algebra generators. We now define the
following similarity transformation

V± = RD± (6)
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whereR = exp(i(π/4)
∑L
j=1 σ̂

y

j ) is a global rotation ofπ/2 around they-axis. From the
relations between the Temperley–Lieb generatorsej+1 = DejD−1 it can be easily shown that

V±σ̂ xj V
−1
± = σ̂ xj σ̂ xj+1 16 j 6 L− 1

V±σ̂ zj σ̂
z
j+1V

−1
± = σ̂ zj+1 16 j 6 L− 1

V±σ̂ xLV
−1
± = ±Q̂Lσ̂

x
Lσ̂

x
1

V±Ĉσ̂ zLσ̂
z
1V
−1
± = ±σ̂ z1 (7)

whereQ̂L = RĈR−1 =∏L
j=1 σ̂

z
j . From (7) it also follows thatV±ĈV −1

± = ±Q̂L. Applying
V+ to H+ andV− to H− gives

H̃± = V±H±V −1
± =

L−1∑
j=2

1

2
(1− σ̂ xj σ̂ xj+1)

(
1− 1

2
(σ̂ zj + σ̂ zj+1)

)
+1

2
(1− σ̂ x1 σ̂ x2 )

(
1− 1

2
(σ̂ z1 + σ̂ z2)

)
+ 1

2
(1∓ Q̂Lσ̂

x
Lσ̂

x
1 )

(
1− 1

2
(σ̂ z1 + σ̂ zL)

)
.

(8)

The operatorsH̃±, restricted to the subspaceŝQL = 1 for H̃+ and Q̂L = −1 for
H̃−, are equivalent to the Hamiltonian of the diffusion–annihilation problem with rates of
diffusion 1/2 and rate of annihilation 1 and periodic boundary conditions, which can be
solved in terms of free fermions [3]. The other cases correspond to non-stochastic processes.
Hence, we obtain a rigorous formulation of the well known duality transformation between
the two models [2]. These results are summarized in table 1. Notice that, although we have
not used it explicitly, the similarity transformation preserves the relations (2) so one can
also representH̃± in terms of Hecke algebra generators. However, one has used here an
Hermitian quotient of the algebra which is different from the one used in [3, 9] and which
allows the Hamiltonian for the diffusion–annihilation to be written as a linear combination
of Hecke algebra generators.

Finally, let us consider the action ofV± in a singleσ̂ zj operator. Expressing the operators
gl in terms of Pauli spin matrices in (3) one can, using the commutation relations for these
operators, show that

V±σ̂ zj V
−1
± = −σ̂ y1 σ̂ z2 . . . σ̂ zj . (9)

Using (9), one obtains the following transformation law for a pair ofσ̂ zk σ̂
z
l k < l

V±σ̂ zk σ̂
z
l V
−1
± = (V±σ̂ zk V −1

± )(V±σ̂ zl V
−1
± ) = (σ̂ y1 σ̂ z2 . . . σ̂ zk )(σ̂ y1 σ̂ z2 . . . σ̂ zk . . . σ̂ zl ) = σ̂ zk+1 . . . σ̂

z
l .

(10)

Note, that takingl = k + 1 or k = L, l = 1 we recover the equalities (7) concerning
σ̂ zk+1. Equation (10) will be useful below when we derive equalities concerning correlation
functions. We now proceed to study the effect ofV± in the states of the theory.

3. The transformation law for the states

The Glauber–Ising Hamiltonian atT = 0 has two ground states, the ferromagnetic states
with all spins up or down. SinceH+ is only equivalent to it in the subspace of the states with
Ĉ = 1, we have to find a linear combination of these two states that belong to this subspace
(for simplicity we will specialize inV+). This state is simply|9〉 = 1

2(|↑ . . . ↑〉+| ↓ . . . ↓).
It is normalized in the sense that〈s|9〉 = 1, where〈s| is the sum of all configurations of
spins with weight one. This expresses the fact that, for a stochastic process, the sum of the
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Table 1. Summary of the relations between Glauber and annihilation dynamics. On the left-hand
side we have the Hamiltonian operator which is equivalent to the Glauber–Ising Hamiltonian
and the sector of the Hilbert space where that equivalence holds, indicated by the eigenvalue
of Ĉ. On the right-hand side we have the tranformed Hamiltonian and the sector in which it is
equivalent to the diffusion–annihilation process (given by the eigenvalue ofQ̂L).

Glauber dynamics Annihilation dynamics

Operators Boundary conditions Operators Boundary conditions

H+, Ĉ = 1 Periodic H̃+, Q̂L = 1 Periodic
H−, Ĉ = 1 Antiperiodic H̃−, Q̂L = −1 Periodic
H+, Ĉ = −1 Antiperiodic H̃+, Q̂L = −1 Non-physical
H−, Ĉ = −1 Periodic H̃−, Q̂L = 1 Non-physical

probabilities of the different configurations accessible to the system (e.g. the configurations
of spins in the Glauber problem) has to add to one. Also ifH is the stochastic Hamiltonian
representing the dynamics then it follows from conservation of probability that〈s| is the
left ground state ofH , i.e. 〈s|H = 0. One can easily check thatĈ|9〉 = |9〉. This equality
implies that

V+〉9| = V+Ĉ|9〉 = (V+ĈV −1
+ )V+|9〉 = Q̂LV+|9〉 (11)

where we have used the transformation law forĈ found above. Thus, the transformed
stateV+|9〉 belongs to the eigenspace witĥQL = 1. In the annihilation language this
corresponds to the sector with an even number of particles [4]. Also, sinceH+|9〉 = 0,
one obtains

V+H+|9〉 = (V+H+V −1
+ )V+|9〉 = H̃+V+|9〉 = 0 (12)

and henceV+|9〉 is a ground state of the annihilation Hamiltonian (in the subspaceQ̂L = 1,
H̃+ is equivalent to it). The only ground state belonging to the subspace with an even
number of particles is the vacuum|0〉, i.e. the state with no particles. Hence, we conclude
that V+|9〉 ∝ |0〉. The proportionality constant can be shown, using (3), to be equal to
(i/
√

2)(−1)L−1 ei(π/4)(L−1) and can be absorbed in the definition ofV+. Following the
same reasoning that led to (12), and in light that〈s|Ĉ = 〈s|, one can similarly show that
〈s|V −1

+ H̃+ = 0 and that〈s|V −1
+ belongs to the even sector. On the same grounds of

uniqueness this shows that this state is equal (up to a normalization constant which we
absorb in the definition ofV −1

+ ) to the left ground state of the annihilation Hamiltonian
with an even number of particles, i.e.〈s|even, which is the sum of all configurations with an
even number of particles with weight one. We are using the same notation〈s| for the left
ground states of the two Hamiltonians because both describe stochastic processes and this
is the usual convention.

We have also found thatH− is equivalent to the Glauber–Ising Hamiltonian in the
subspaceĈ = −1. SinceV−ĈV −1

− = −Q̂L this subspace is mapped to the even sector
of the annihilation problem. But in this sector̃H− (8) is not equivalent to a stochastic
Hamiltonian. If one starts with the subspaceĈ = 1 thenV− effectively maps this sector
to the odd sector wherẽH− is equivalent to the annihilation Hamiltonian, but in this case
H− is not equivalent to the Glauber–Ising Hamiltonian with periodic boundary conditions,
but to the Glauber–Ising Hamiltonian with anti-periodic boundary conditions, which is also
a stochastic process. Using the same argument as above one can show that the ground
state of this Hamiltonian is mapped to the ground state of the odd sector of the annihilation
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Hamiltonian. This state is just a uniform superposition of states with one particle at each
site of the lattice [4]. If we applyV −1

− to this state we will therefore obtain the ground state
of the Glauber–Ising Hamiltonian with anti-periodic boundary conditions (the observation
about normalization factors also applies here). Such state is a uniform superposition of
2L − 2 states with two domain walls, one at the boundary and one at each site of the
lattice, plus the two states with all spins up or down. These two states are, due to the anti-
periodic boundary conditions, the image of the state with one particle at the boundary in the
diffusion–annihilation model. The previous discussion shows that the transformationsV+
andV− restricted to theĈ = 1 subspace, map a stochastic process (Glauber–Ising dynamics
with periodic or anti-periodic boundary conditions) to a stochastic process (annihilation
dynamics), something which we also pointed out in table 1. In the other cases the mapping
is from a stochastic problem to a non-stochastic problem. Nevertheless, these mappings can
be considered from a purely formal point of view and examples of similarity transformations
between stochastic and non-stochastic processes have already been studied in the literature
[14–16].

Here we shall concentrate in the stochastic–stochastic mapping given byV+. We will
consider the study of time-dependent correlation functions in uncorrelated random initial
states evolving in time according to Glauber dynamics. The state

|8〉 =
L∏
j=1

[
1+m

2
+ 1−m

2
σ̂ xj

]
|9〉 (13)

corresponds to the superposition of two random initial states with initial magnetizationm and
−m. From the point of view of the calculation of correlation functions of an even number
of σ̂ zj operators the two states are equivalent and|8〉 belongs to theĈ = 1 subspace. Under
the application ofV+, |8〉 transforms to

|8̃〉 =
L∏
j=1

[
1+m

2
+ 1−m

2
σ̂ xj σ̂

x
j+1

]
|0〉 (14)

where we have used (7) and the fact thatV+|9〉 = |0〉. This is an initial state with short-
range correlations and its form will play a crucial role in the determination of the correlation
functions in the late time regime. UnderV+ the multiple-time correlation functions of an
even number of̂σ zj spins at timest1, t2, etc, transform as

〈s|σ̂ zj1
(t1)σ̂

z
j2
(t1)σ̂

z
j3
(t2)σ̂

z
j4
(t2) . . . σ̂

z
j2N−1

(tN )σ̂
z
j2N
(tN )|8〉

= 〈s|σ̂ zj1
σ̂ zj2

e−H
+(t1−t2)σ̂ zj3

σ̂ zj4
e−H

+(t2−t3) . . . e−H
+(tN−1−tN )σ̂ zj2N−1

σ̂ zj2N
e−H

+tN |8〉
= 〈s|evenσ̂ zj1+1 . . . σ̂

z
j2

e−H̃
+(t1−t2)σ̂ zj3+1 . . . σ̂

z
j4

e−H̃
+(t2−t3) . . .

. . . e−H̃
+(tN−1−tN )σ̂ zj2N−1+1 . . . σ̂

z
j2N

e−H̃
+tN |8̃〉

= 〈s|σ̂ zj1+1(t1) . . . σ̂
z
j2
(t1)σ̂

z
j3+1(t2) . . . σ̂

z
j4
(t2) . . . σ̂

z
j2N−1+1(tN ) . . . σ̂

z
j2N
(tN )|8̃〉 (15)

where we have used equations (8) and (10). We suppose thatj1 < j2, j3 < j4, etc. Also
one concludes that for any odd number ofσ̂ zj operators, one has

〈s|σ̂ zj1
(t1) . . . σ̂

z
j2N+1

(t2N+1)|8〉 = 0 (16)

sinceσ̂ zj anticommutes withĈ.
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4. The calculation of correlation functions

Using (15) we have, in particular, that

〈s| 12(1− σ̂ zj−1(t)σ̂
z
j (t))|8〉 = 〈s| 12(1− σ̂ zj (t))|8̃〉 = 〈s|n̂j (t)|8̃〉. (17)

The operator12(1−σ̂ zj−1σ̂
z
j ) checks for the existence of a domain wall at sitej in the Glauber

problem, i.e. it checks if at sitej the spins cease to point up and start to point down orvice
versa. The operator12(1− σ̂ zj ) checks for the existence of a particle at sitej , i.e. if spin j
is down in the annihilation problem [4]. This indeed corresponds to the well known duality
transformation [2, 5]. Similar relations hold for higher-order correlation functions. Now
we will use the fact that the diffusion annihilation Hamiltonian can be completely solved
in terms of free fermions by means of the Jordan–Wigner transformation [17]. Using it,
one is able to write the spin raising and lowering operatorsŝ+j , ŝ−j (ŝ±j = 1

2(σ̂
x
j ± iσ̂ yj )) in

terms of creation and annihilation operatorsâ†j , âj for spinless fermions. It turns out that the

calculation of a multiple-time correlation function of then̂j operators in state|8̃〉 (n̂j = â†j âj
in the fermion language) can be reduced to the calculation of objects like〈s|b̂p1 . . . b̂p2k |8̃〉
(k 6 N ) [18], where b̂p is the Fourier transform of the annihilation operatorâi . The
momentum labelspj are half-odd integers between−L/2+ 1 andL/2 [3, 4]. Also, one is
able to express the state (14) in terms of fermion operators. The result is

|8̃〉 =
L∏
j=1

[
1+m

2
+ 1−m

2
σ̂ xj σ̂

x
j+1

]
|0〉 = exp

(
β

L∑
j=1

(σ̂ xj σ̂
x
j+1− 1)

)
|0〉

= exp

(
β

L∑
j=1

(â
†
j â
†
j+1+ â†j âj+1+ â†j+1âj + âj+1âj − 1)

)
|0〉 (18)

wherem = e−2β . The first equality follows from the fact that(σ̂ xj σ̂
x
j+1)

2 = 1 and the second
just follows from the rules of the Jordan–Wigner transformation. In terms of the momentum
space operators we can write|8̃〉 as

|8̃〉 = exp

(
2β
∑
p>0

[
cos

(
2πp

L

)
(b̂†pb̂p + b̂†−pb̂†−p)

+ sin

(
2πp

L

)
(b̂pb̂−p + b̂†−pb̂†p)− 1

])
|0〉. (19)

The simplest approach to use if one wants to calculate the density or any equal-time
correlators is given in [4]. For the calculation of multiple-time correlators, we will follow
a different route. We will look for operatorŝc†p, ĉp that diagonalize the quadratic form
appearing in the exponent of (19). This can be accomplished by means of a Bogoliubov
transformation [19]

ĉp = cos

(
πp

L

)
b̂p − sin

(
πp

L

)
b̂
†
−p

ĉ†p = cos

(
πp

L

)
b̂†p − sin

(
πp

L

)
b̂−p

(20)

and one gets

|8̃〉 = exp

(
2β
∑
p

(ĉ†pĉp − 1)

)
|0〉. (21)
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One then expands the exponential using the anti-commutation relations for theĉ
†
p, ĉp.

Re-expressing these operators in terms ofb̂
†
p, b̂p and applying them to the vacuum, one

finally obtains

|8̃〉 = e−βL
∏
p>0

[γp + δpb̂†−pb̂†p]|0〉 (22)

whereγp = cosh(2β) − sinh(2β) cos(2πp/L) and δp = sinh(2β) sin(2πp/L). The form
(22) expresses the translation invariance of the state|8̃〉. One defines the following object

Z[ηp, η−p] = 〈0| exp

(∑
p>0

(
cot

(
πp

L

)
b̂pb̂−p + ηpb̂p + η−pb̂−p

))
|8̃〉 (23)

where the quantitiesηp, η−p are Grassmann variables anti-commuting among themselves
and with theb̂ps. Their presence is necessary to make the terms in the exponential commute
with each other. It can be shown [18] thatZ[ηp, η−p] is the generating function for the
quantities〈s|b̂p1 . . . b̂p2k |8̃〉 that is

〈s|b̂p1 . . . b̂p2k |8̃〉 = ∂ηp1
. . . ∂ηp2k

Z[ηp, η−p]|ηp=0. (24)

Substituting (22) in (23) we find, after a few algebraic manipulations, involving the anti-
commutation relations between theb̂†p, b̂p [18], the following expression forZ[ηp, η−p]:

Z[ηp, η−p] = exp

(∑
p>0

sinh(2β) e−2β sin

(
2πp

L

)
η−pηp

)
. (25)

SinceW = lnZ is a quadratic function in theηs it immediately follows that a Wick’s
decomposition holds for the quantities〈s|b̂p1 . . . b̂p2k |8̃〉 [18]. In particular, from (24) and
(25) one has

〈s|b̂p′ b̂p|8̃〉 = sinh(2β) e−2β sin

(
2πp′

L

)
δp,−p′ . (26)

Given that the expression for the space-dependent average density is [4]

〈n̂j (t)〉 = 1

L

∑
p,p′

e(2πi/L)j (p−p
′)−(ε−p+εp′ )t cot

(πp
L

)
〈s|b̂p′ b̂−p|8̃〉 (27)

whereεp = 1− cosp, one obtains, substituting (26) in (27) and taking the thermodynamic
limit L→∞, the following expression for the density of particlesρ(t) at time t

ρ(t) = 1
2(1−m2) e−2t (I0(2t)+ I1(2t)) (28)

whereI0(2t), I1(2t) are the modified Bessel functions of order zero and one, and where we
have used the identitym = e−2β . This is the well known expression obtained by Family
and Amar [5] who have also considered a random initial state in Glauber dynamics. They
have shown that while the initial distribution of spins is uncorrelated the distribution of
domain walls, i.e. the distribution of particles in the annihilation problem, is correlated.
This correlated structure is found in the transformed state|8̃〉 (14). For m = 0, the
expression (28) is identical to the one found by Spouge [6] for an uncorrelated random
initial state with initial density 1/2 in the annihilation problem. Indeed, this identity is
more general. Ifm = 0 then this means that we have to take the limitβ →∞. If we take
such a limit in equation (22), then one obtains the exact expression for a random initial state
with density 1/2, projected over the even sector [4]. Therefore, our calculations provide
a rigorous framework for the well known duality transformation. In the long-time limit
t → ∞ one finds from (28) the leading behaviourρ(t) ≈ (1− m2)/2

√
πt . It depends
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on the initial conditions (i.e. magnetization) [5]. The amplitude ofρ(t) differs from the
universal result found for uncorrelated random initial states [7, 15]. Thus it is seen that
the presence of correlations in the initial state breaks the universality of the amplitudes of
correlation functions.

Our results, namely the Wick decomposition, also allow the explicit computation of
higher-order correlation functions. Apart from a factor 2 sinh(2β) e−2β the result (26) is
identical to the results obtained for the random initial state with density 1/2 [18] and, as
stated above, it reduces to it whenm = 0. Therefore, one has

〈s|b̂p1 . . . b̂p2k |8̃〉 = (1− e−4β)k〈s|b̂p1 . . . b̂p2k |1/2〉even. (29)

As an example of the above result let us consider the two-point correlation function
〈s|n̂j (t)n̂k(t ′)|8̃〉. We use (29) withk = 2 andk = 1 because this object can be written as a
linear combination of the terms〈s|b̂p1b̂p2b̂p3b̂p4|8̃〉 and〈s|b̂p1b̂p2|8̃〉 [18], which contribute
with different powers of(1− e−4β). Separating such powers, we obtain

〈s|n̂j (t)n̂k(t ′)|8̃〉 = (1− e−4β)2〈s|n̂j (t)n̂k(t ′)|1/2〉even+ 1

2L2
[(1− e−4β)− (1− e−4β)2]

×
{∑
p1,p2

e(2π i/L)(p1−p2)(j−k)−(ε−p1+εp2)t+(ε−p1−ε−p2)t
′
sin

(
2πp2

L

)
cot

(πp1

L

)
+
∑
p1,p2

e(2π i/L)(p1−p2)(j−k)−(ε−p1+εp2)t−(εp1−εp2)t
′
sin

(
2πp1

L

)
cot

(πp1

L

)}
. (30)

In the thermodynamic limitL→∞, we have fort ′ = t
〈s|n̂j (t)n̂k(t)|8̃〉 = (1− e−4β)2〈s|n̂j (t)n̂k(t)|1/2〉even+ e−4β(1− e−4β)

×{ 12e−2t (I0(2t)+ I1(2t))δj,k + 1
4[θ(j − k)− θ(k − j)]

×e−2t (Ij−k−1(2t)− Ij−k+1(2t))} (31)

where we have used the integral representation of the modified Bessel functionsIj (2t) and
θ(x) is the Heaviside step function. The termθ(j − k)− θ(k − j) is the Fourier transform
of cot(πp/L) [18]. In particular, whent = 0, this reduces to

〈s|n̂j n̂k|8̃〉 = 1
2(1− e−4β)δj,k + 1

4(1− e−4β)2(1− δj,k)+ 1
4 e−4β(1− e−4β)(δj,k+1+ δj,k−1)

(32)

where we have used the fact that there are no correlations in the state|1/2〉even at t = 0.
One clearly recognizes in the first two terms the contribution of the unconnected part of
the correlation function. But the third term indeed confirms that even att = 0 there are
short-range correlations. This term is zero when we takeβ → ∞ and we just obtain the
trivial result for the|1/2〉even state.

If we use equation (30) to calculate the density–density correlation function in the
thermodynamic limit we see that the second term of (30) will vanish. This leaves us with a
term with an amplitude proportional to(1−m2)2. The ratio of this correlation function with
the square of the density (28) is independent ofm in agreement with the general results
known from the renormalization group approach (see for example [20]). So despite the fact
that the amplitudes of the various correlation functions are non-universal as emphasized
above, their ratios obey the universality hypothesis.

The results discussed above show that this approach not only allows us to recover the
known results, but also provides a convenient way to compute higher-order correlation
functions that can of course be translated back to the Glauber–Ising language.



3258 J E Santos

5. Conclusions

We investigated the relation between the Glauber–Ising model at zero temperature and the
diffusion–annihilation model in the free fermion case. We obtained the following new
results.

(i) The duality transformation between the two models can be formulated as a
similarity transformation if one uses a Hamiltonian with sector-dependent toroidal boundary
conditions. The transformation laws for the operators are explicitly given. We also obtain
the transformation laws for the states. This permits aone-to-onecorrespondence between
a state of Glauber–Ising dynamics and a state of the diffusion–annihilation problem. In
particular, an uncorrelated random initial state in Glauber dynamics transforms to a state
with short-range correlations.

(ii) Using the free fermion solution of the diffusion–annihilation problem we have
computed the time-dependent behaviour of the density and equal-time, two-point correlation
function in this short-range correlated state. For the density, we recover the results of the
literature. We show that, surprisingly, the presence of correlations extending over only
one lattice site in the initial state leads to a long-time behaviour of the density dependent
on the initial condition. The field theoretic approach we have used can be applied to
the study of higher-order correlation functions. Its use depends on the form (22) of the
initial state which reflects the translation invariance of this state. An initial state with
the Wick’s decomposition property was also discussed by Balboniet al [21]. They have
considered a continuous system described by a boson field theory. The initial state which
they have chosen is characterized by the fact that the connected correlation functions of
the density operator of order higher than two vanish. They found that for pure annihilation
the amplitudes are also non-universal. In the case of the initial state (14) the higher-order-
connected correlation functions of the density operator are non-zero, which shows that this
state has a different structure.
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I am grateful to G Scḧutz for having introduced me to the concept of duality transformation
and associated Temperley–Lieb and Hecke algebras and for carefully reading the manuscript.
It is also a pleasure to acknowledge many fruitful discussions with Robin Stinchcombe,
Michel Droz, Zoltan Racz, Haye Hinrichsen and John Cardy. I also thank Tim Newman
for having called my attention to the universality of the ratios of amplitudes of correlation
functions. The author is supported by the grant PRAXIS XXI/BD/3733/94 - JNICT -
PORTUGAL.

References

[1] Glauber R J 1963J. Math. Phys.4 294
[2] Racz Z 1985Phys. Rev. Lett.55 1707
[3] Alcaraz F C, Droz M, Henkel M and Rittenberg V 1994Ann. Phys., NY230 250
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